Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Chloro-1,3-dimethyl-1H-pyrazole-4carbaldehyde

Yong-Jun Shen, ${ }^{\text {a }}$ Mei $\mathrm{Xu}^{\mathbf{b}}$ and Chong-Guang Fan ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry and Environmental Science, Cangzhou Normal University, Cangzhou 061001, People's Republic of China
Correspondence e-mail: gaofz2005@yahoo.com.cn

Received 3 October 2011; accepted 7 October 2011

Key indicators: single-crystal X-ray study; $T=113 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.027 ; w R$ factor $=0.081$; data-to-parameter ratio $=14.2$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}$, the molecules are situated on mirror planes, so H atoms of two methyl groups were treated as rotationally disordered over two orientations each. The crystal packing exhibits weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and short $\mathrm{Cl} \cdots \mathrm{N}$ contacts of 3.046 (2) \AA.

Related literature

For the biological activity of pyrazole derivatives, see: Hamaguchi et al. (1995); Motoba et al. (1992). For a related structure, see: Yokoyama et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O} \quad M_{r}=158.59$

Orthorhombic, Pnma
$a=13.167$ (9) A
$Z=4$
$b=6.463$ (5) \AA
Mo $K \alpha$ radiation
$c=8.190$ (6) \AA
$\mu=0.47 \mathrm{~mm}^{-1}$
$V=696.9(8) \AA^{3}$
$0.24 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection
Rigaku Saturn724 CCD diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) $T_{\text {min }}=0.895, T_{\text {max }}=0.920$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad 63$ parameters
$w R\left(F^{2}\right)=0.081 \quad \mathrm{H}$-atom parameters constrained
$S=1.05$
897 reflections
$\Delta \rho_{\max }=0.36 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{\circ} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.58	$3.220(3)$	123

Symmetry code: (i) $x, y, z+1$.
Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Scientific Research Foundation for Talent Introduction of Nantong University (grant No. 03080226).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5167).

References

Hamaguchi, H., Kajihara, O. \& Katoh, M. (1995). J. Pestic. Sci. 20, 173-175. Motoba, K., Suzuki, T. \& Uchida, M. (1992). Pestic. Biochem. Physiol. 43, 3744.

Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yokoyama, Y., Kurimoto, Y., Saito, Y., Katsurada, M., Okada, I., Osano, Y. T., Sasaki, C., Yokoyama, Y., Tukada, H., Adachi, M., Nakamura, S., Murayama, T., Harazono, T. \& Kodaira, T. (2004). Chem. Lett. 33, 106-107.

supplementary materials

Acta Cryst. (2011). E67, o2936 [doi:10.1107/S1600536811041407]

5-Chloro-1,3-dimethyl-1 H-pyrazole-4-carbaldehyde

Y.-J. Shen, M. Xu and C.-G. Fan

Comment

The pyrazole ring is a prominent heterocyclic scaffold in numerous bioactive molecules. Many pyrazole-based compounds are reported to possess diverse biological activities (Motoba et al., 1992; Hamaguchi et al., 1995). The title compound (I), is an important intermediate for the synthesis of agrochemicals and drugs. Details of its crystal structure may be helpful for the design of novel bioactive molecules.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in ethyl 4-formyl-1,3-di-methylpyrazole-5-carboxylate (Yokoyama et al., 2004). All molecules in (I) are situated on mirror planes. The crystal packing exhibits weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1) and short $\mathrm{Cl} \cdots \mathrm{N}$ contacts of 3.046 (2) \AA.

Experimental

To a well stirred cold solution of DMF (60 mmol) was added dropwise phosphoryl trichloride (90 mmol). The resulting mixture was stirred at 273 K for another 20 min . To the above solution was added 1,3-dimethyl- $1 H$-pyrazol-5(4H)-one (30 mmol), then it was heated to 363 k for 4 h . Completion of the reaction was checked by TLC, the reaction mixture was cooled and poured into cold water $(100 \mathrm{ml})$. The pH of the mixture was adjusted to 7 by sodium hydroxide solution. The resulting solution was extracted with ethyl acetate $(3 * 30 \mathrm{ml})$. The organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, then the residue was recrystallized from ethyl acetate/petroleum ether to give a colourless crystal.

Refinement

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95$, and $0.98^{\circ} \mathrm{A}$, and included in the final cycles of refinement using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. H atoms of two methyl groups were treated as rotationally disordered over two orientations each with occupancies fixed to 0.5 .

Figures

Fig. 1. The molecular structure of (I) showing the atomic labels and 30% probability displacement ellipsoids.

supplementary materials

5-Chloro-1,3-dimethyl-1H-pyrazole-4-carbaldehyde

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}$
$M_{r}=158.59$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=13.167$ (9) \AA
$b=6.463(5) \AA$
$c=8.190(6) \AA$
$V=696.9(8) \AA^{3}$
$Z=4$

Data collection

Rigaku Saturn 724 CCD diffractometer
Radiation source: rotating anode multilayer
Detector resolution: 14.22 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
$T_{\text {min }}=0.895, T_{\text {max }}=0.920$
7166 measured reflections
$F(000)=328$
$D_{\mathrm{x}}=1.511 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2460 reflections
$\theta=2.5-27.8^{\circ}$
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=113 \mathrm{~K}$
Prism, colourless
$0.24 \times 0.22 \times 0.18 \mathrm{~mm}$

897 independent reflections
726 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=27.8^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-16 \rightarrow 17$
$k=-8 \rightarrow 8$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.081$
$S=1.05$

897 reflections
63 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0516 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. ($<1)$
C11	$0.41884(3)$	0.2500	$0.25597(5)$	$0.01825(17)$	
O1	$0.48840(10)$	0.2500	$-0.28470(15)$	$0.0222(3)$	
N1	$0.62098(12)$	0.2500	$0.23171(16)$	$0.0159(4)$	
N2	$0.70015(10)$	0.2500	$0.12266(17)$	$0.0166(3)$	
C1	$0.53190(11)$	0.2500	$0.1537(2)$	$0.0146(4)$	
C2	$0.54995(11)$	0.2500	$-0.0124(2)$	$0.0141(4)$	
C3	$0.65799(11)$	0.2500	$-0.0242(2)$	$0.0142(4)$	
C4	$0.72306(11)$	0.2500	$-0.1739(2)$	$0.0178(4)$	
H4A	0.7015	0.3620	-0.2468	0.027^{*}	0.50
H4B	0.7161	0.1170	-0.2303	0.027^{*}	0.50
H4C	0.7942	0.2710	-0.1426	0.027^{*}	0.50
C5	$0.63988(14)$	0.2500	$0.4067(2)$	$0.0234(4)$	
H5A	0.5928	0.3457	0.4603	0.035^{*}	0.50
H5B	0.7099	0.2942	0.4276	0.035^{*}	0.50
H5C	0.6297	0.1102	0.4500	0.035^{*}	0.50
C6	$0.47278(12)$	0.2500	$-0.1387(2)$	$0.0167(4)$	
H6	0.4039	0.2500	-0.1041	0.020^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0131(3)$	$0.0215(3)$	$0.0202(3)$	0.000	$0.00588(14)$	0.000
O1	$0.0198(7)$	$0.0291(8)$	$0.0177(6)$	0.000	$-0.0013(5)$	0.000
N1	$0.0138(8)$	$0.0210(8)$	$0.0130(7)$	0.000	$0.0020(5)$	0.000
N2	$0.0119(7)$	$0.0226(8)$	$0.0153(7)$	0.000	$0.0035(6)$	0.000
C1	$0.0119(8)$	$0.0145(9)$	$0.0175(8)$	0.000	$0.0017(6)$	0.000
C2	$0.0124(8)$	$0.0137(8)$	$0.0163(8)$	0.000	$0.0001(6)$	0.000
C3	$0.0125(8)$	$0.0137(9)$	$0.0163(8)$	0.000	$0.0000(6)$	0.000
C4	$0.0135(8)$	$0.0239(10)$	$0.0159(8)$	0.000	$0.0008(6)$	0.000
C5	$0.0237(9)$	$0.0354(12)$	$0.0111(9)$	0.000	$0.0000(7)$	0.000
C6	$0.0119(8)$	$0.0182(9)$	$0.0199(8)$	0.000	$-0.0006(7)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cl} 1-\mathrm{C} 1$	$1.7081(18)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.495(2)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.213(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 1$	$1.336(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9800
$\mathrm{~N} 1-\mathrm{N} 2$	$1.373(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800

supplementary materials

$\mathrm{N} 1-\mathrm{C} 5$	$1.455(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.325(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.381(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.426(2)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.450(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$110.83(14)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$128.43(15)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 5$	$120.74(15)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1$	$105.82(13)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$108.67(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl} 11$	$122.06(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$	$129.27(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$103.80(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	$125.60(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 6$	$130.61(15)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$110.88(14)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.27(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$128.84(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	0.0
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	180.0
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	0.0
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	180.0
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl} 1$	180.0
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl} 1$	0.0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.0
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	180.0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	180.0

C5-H5A	0.9800
C5-H5B	0.9800
C5-H5C	0.9800
C6-H6	0.9500
C3-C4-H4B	109.5
H4A-C4-H4B	109.5
C3-C4-H4C	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5
N1-C5-H5A	109.5
N1-C5-H5B	109.5
H5A-C5-H5B	109.5
N1-C5-H5C	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
O1-C6-C2	$125.74(15)$
O1-C6-H6	117.1
C2-C6-H6	117.1
C11-C1-C2-C6	0.0
N1-N2-C3-C2	0.0
N1-N2-C3-C4	180.0
C1-C2-C3-N2	0.0
C6-C2-C3-N2	180.0
C1-C2-C3-C4	180.0
C6-C2-C3-C4	0.0
C1-C2-C6-O1	180.0
C3-C2-C6-O1	0.0

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{Ol}^{\mathrm{i}}$	0.98	2.58	$3.220(3)$	123

Symmetry codes: (i) $x, y, z+1$.

Fig. 1

